If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16m^2+8m-8=0
a = 16; b = 8; c = -8;
Δ = b2-4ac
Δ = 82-4·16·(-8)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-24}{2*16}=\frac{-32}{32} =-1 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+24}{2*16}=\frac{16}{32} =1/2 $
| 1/4x-12=-3 | | 24x^2-54x-540=0 | | 8a-9=6a-11 | | N=3n-10 | | F(x)=23x | | 12x+13=-25 | | (10)(36)=(x)(72) | | (3/2x+6)+(2/5x+10)+x=180 | | .2(x+25)=8 | | -3p-2+4p=6 | | -3p-9+4p=-2 | | p1/3=117 | | 117/(1/3)=p | | 6×=+n3+2 | | 5x×3x=320 | | 9x=-3-3 | | (x+10)(3x+18)=180 | | x3=690 | | b²+4b=96 | | 6t+10=46 | | (25^x)5^x+3=625^x-7 | | 5a-1=3(2a+80) | | -2/5m=-2 | | 12y+44=116 | | 40x=70x-105 | | t/7=-8 | | 1/3x-4=0.5 | | t/3=-8 | | 0.6x+7=-14 | | 85=4d+9 | | x/4+16/x=x-8 | | 15+21y=39 |